
1. Introduction
Aging infrastructure and changes in regulations, finance, patterns of population and infrastructure use, and 
climate challenge the ability of critical infrastructures to meet design objectives (Doss-Gollin et al., 2020, 2021; 
Chester et al., 2020; M. Ho et al., 2017; Tye & Giovannettone, 2021). To achieve acceptable performance with 
reasonable planning efforts, current practice in engineering, infrastructure design, and regulation relies heavily 
on standards that specify design events or conditions that buildings and infrastructure should safely withstand 
(Bruneau et al., 2017). For example, the Federal Emergency Management Agency (FEMA), local governments, 
and engineering consultants produce local floodplain maps in many communities. Buildings in the designated 
floodplain are subject to specific regulations, such as flood insurance requirements as an eligibility require-
ment for federally backed mortgages (Kousky & Kunreuther, 2014) or minimum elevations for new construction 
(ASCE, 2006; FEMA, 2011). Although this paper focuses on flooding, similar approaches inform mitigation 
strategies for a wide range of other hazards (American Society of Civil Engineers, 2013).

Standards-based risk management frameworks have many advantages, including scalability, explainability, and 
simplicity. However, the choice of standard is a complex design and policy choice. Risk-based design and cost 

Abstract Projections of nonstationary climate risks can vary considerably from one source to another, 
posing considerable communication and decision-analytical challenges. One such challenge is how to 
present trade-offs under deep uncertainty in a salient and interpretable manner. Some common approaches 
include analyzing a small subset of projections or treating all considered projections as equally likely. These 
approaches can underestimate risks, hide deep uncertainties, and are mostly silent on which assumptions 
drive decision-relevant outcomes. Here we introduce and demonstrate a transparent Bayesian framework 
for synthesizing deep uncertainties to inform climate risk management. The first step of this workflow is 
to generate an ensemble of simulations representing possible futures and analyze them through standard 
exploratory modeling techniques. Next, a small set of probability distributions representing subjective 
beliefs about the likelihood of possible futures is used to weight the scenarios. Finally, these weights are 
used to compute and characterize trade-offs, conduct robustness checks, and reveal implicit assumptions. 
We demonstrate the framework through a didactic case study analyzing how high to elevate a house to 
manage  coastal flood risks.

Plain Language Summary Identifying sound strategies to manage risks driven by climatic 
changes is a complex task given the large uncertainties surrounding projections of coupled natural-human 
systems. These uncertainties often arise from choices experts have to make, for example, about how to 
formulate scientific models of future water levels. Different experts can disagree about these choices, leading 
to different projections. Analyzing decisions in such a situation of deep uncertainty poses nontrivial challenges. 
For example, picking a single representative projection can under-estimate risk and result in poor decisions. 
Similarly, communicating results separately for each projection can overwhelm decision-makers. To make 
matters worse, typical approaches to this problem are mostly silent on what assumptions make a difference for 
the decisions at hand. We develop and demonstrate a framework to address these challenges. The framework 
provides a transparent approach to (a) combine a large number of deeply uncertain projections to a more 
interpretable sample set and (b) provide insights about which assumptions and modeling choices influence 
decisions. We demonstrate the approach with a relatively simple example question of how high to elevate a 
house in the face of deeply uncertain projections of future water levels.

DOSS-GOLLIN AND KELLER

© 2022 The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided the 
original work is properly cited and is not 
used for commercial purposes.

A Subjective Bayesian Framework for Synthesizing Deep 
Uncertainties in Climate Risk Management
James Doss-Gollin1   and Klaus Keller2 

1Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA, 2Thayer School of Engineering, 
Dartmouth College, Hanover, NH, USA

Key Points:
•  We introduce a Bayesian framework 

to transparently synthesize and 
characterize deep uncertainties with 
the goal to support decision-making

•  We demonstrate the framework using 
a simple case study of house elevation 
for coastal flood risk management

•  Estimates of performance or 
robustness under deep uncertainty 
necessarily involve subjective 
judgments

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
J. Doss-Gollin,
jdossgollin@rice.edu

Citation:
Doss-Gollin, J., & Keller, K. (2023). 
A subjective Bayesian framework 
for synthesizing deep uncertainties 
in climate risk management. Earth's 
Future, 11, e2022EF003044. https://doi.
org/10.1029/2022EF003044

Received 9 JUL 2022
Accepted 19 DEC 2022

Author Contributions:
Conceptualization: James Doss-Gollin, 
Klaus Keller
Data curation: James Doss-Gollin, Klaus 
Keller
Formal analysis: James Doss-Gollin, 
Klaus Keller
Funding acquisition: Klaus Keller
Investigation: James Doss-Gollin, Klaus 
Keller
Methodology: James Doss-Gollin, Klaus 
Keller
Project Administration: Klaus Keller
Resources: James Doss-Gollin, Klaus 
Keller
Software: James Doss-Gollin

10.1029/2022EF003044
RESEARCH ARTICLE

1 of 19

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-3428-2224
https://orcid.org/0000-0002-5451-8687
https://doi.org/10.1029/2022EF003044
https://doi.org/10.1029/2022EF003044
https://doi.org/10.1029/2022EF003044
https://doi.org/10.1029/2022EF003044
https://doi.org/10.1029/2022EF003044


Earth’s Future

DOSS-GOLLIN AND KELLER

10.1029/2022EF003044

2 of 19

benefit analysis (Eijgenraam et al., 2014; van Dantzig, 1956; Xian et al., 2017) offer a quantitative framework 
for comparing possible standards by emphasizing “a proportionate response to risk, so that the amount invested 
in risk reduction is in proportion to the magnitude of the risk and the cost-effectiveness with which that risk may 
be reduced” (Merz et al., 2010). This provides a formal basis for choices such as protecting hospitals and critical 
infrastructure to a higher degree than ordinary buildings (ASCE, 2013). However, these methods are silent on 
how standards should balance trade-offs, not only between cost and performance but also between other stake-
holder values such as sense of place, distributive justice, and safety (Bessette et al., 2017; Helgeson et al., 2022; 
Keller et al., 2021; Quinn et al., 2017; Vezér et al., 2018).

Moreover, because estimates of performance trade-offs require implicit or explicit assumptions about the likeli-
hood of different possible futures. Current practice emphasizes nominally objective methods that can be applied 
consistently across locations. For example, the United States Geological Survey Bulletin 17C specifies proce-
dures for estimating flood frequency (England et al., 2019). Similarly, the National Oceanic and Atmospheric 
Administration (NOAA) Atlas 14 provides estimates of the intensity, duration, and frequency of extreme rainfall 
(National Weather Service & Office of Water Prediction, 2022; Perica et al., 2018). One statistical assumption 
these analyses make is stationarity (the assumption that past and future hazard come from the same probability 
density function [PDF]), but global climate change and local environmental changes have cast scrutiny on this 
assumption (Doss-Gollin et  al., 2019; Merz et  al., 2014; Milly et  al., 2008). While some methods have been 
proposed for incorporating nonstationarity into risk analyses (see Salas et al., 2018, for a review), these assume 
specific forms of a trend which may not adequately represent physical processes or sample only a subset of 
uncertainties (Doss-Gollin et al., 2019; Montanari & Koutsoyiannis, 2014; Serinaldi & Kilsby, 2015). At least in 
part because of the challenges associated with developing objective methods to select from diverging projections 
of future hazard, official guidance continues to rely on the stationarity assumption (England et al., 2019; Perica 
et al., 2018).

The limitations of objectivist approaches to projecting risk extend beyond estimating nonstationary climate 
hazards. Human-natural systems are never closed and model results are never unique, and thus validation and 
verification of models representing these systems is necessarily qualitative and subjective (Oreskes et al., 1994). 
In other words, no model exists that could represent the full truth, and the future is therefore deeply uncertain 
(Haasnoot et al., 2021; Keller et al., 2021; Lempert, 2002; Walker et al., 2013). To address these challenges, a 
growing literature on decision making under deep uncertainty (DMDU) emphasizes the value of identifying deci-
sions that are robust, in some sense, to deep uncertainties (Borgomeo et al., 2018; Herman et al., 2015; McPhail 
et al., 2019; Moody & Brown, 2013). Within this literature has emerged a debate regarding the value and use of 
probabilistic information (see Taner et al., 2019, and references therein). On the one hand, scholars have pointed 
out that predictions are inherently unreliable, and representing deep uncertainties through probability distribu-
tions frequently over-estimates predictive skill (Groves & Lempert, 2007; Lempert & Schlesinger, 2000). On 
the other, assessments of which decisions are robust depend on subjective choices about how to define robust-
ness and how to sample uncertainties (McPhail et al., 2019; Quinn et al., 2020; Reis & Shortridge, 2020) and 
thus nominally nonprobabilistic methods can obscure rather than solve the problems of probabilistic approaches 
(Schneider, 2001, 2002).

In this paper we offer a conceptual step toward bridging this divide by presenting a framework that is designed 
to combine the strengths of both approaches. In the first step, exploratory or bottom-up modeling is used to build 
insight and identify potential system vulnerabilities (Bankes,  1993; Brown et  al.,  2012; Moallemi, Kwakkel, 
et al., 2020). In the second step, we integrate exploratory ensembles of deep uncertainties into a single proba-
bilistic representation (we refer to this as “synthesizing” deep uncertainties) to formally estimate performance 
metrics and trade-offs using subjective probability distributions. Drawing from the literature on building predic-
tive models when all models are wrong (Box, 1976; Gelman & Shalizi, 2013; Piironen & Vehtari, 2017), we 
interpret these probability distributions not as statements of fact, but rather as a self-consistent framework for 
reasoning about how different assumptions lead to different inferences. An advantage of our approach is that 
it facilitates computationally efficient analysis of how alternative probabilistic models would affect estimated 
performance metrics and trade-offs.

We illustrate our approach through a didactic case study of whether to elevate a hypothetical house, and if so 
how high. Prior studies have found that floodproofing and building-scale vulnerability reduction measures, 
including house elevation, can effectively reduce local flood damages in many contexts (Aerts, 2018; de Moel 
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et al., 2014; de Ruig et al., 2020; Kreibich et al., 2005; Mobley et al., 2020; 
Rözer et al., 2016; Slotter et al., 2020), and both local building codes (Ameri-
can Society of Civil Engineers, 2006, 2013; Bruneau et al., 2017) and federal 
policy (The Federal Emergency Management Agency, 2011) require eleva-
tion in some cases. Guidance for homeowners, notably from FEMA, recom-
mends elevating to the base flood elevation (BFE; typically the 100  year 
flood) plus a freeboard (ASCE, 2015; FEMA, 2014) but recent research has 
demonstrated that neglecting uncertainty in the cost-benefit analysis can lead 
to poor decisions (Zarekarizi et al., 2020). Focusing on deep uncertainty in 
sea level rise (SLR) over the 70 years design life of a hypothetical house, 
we seek to answer the research question “how can decision analysis trans-
parently synthesize deep uncertainties?” To shed light on this question in a 
single paper, we necessarily are silent on key issues that would be relevant to 
real-world decision-makers including alternative decision levers, the poten-
tial for adaptive decision rules, and rival problem framings.

We proceed as follows. In Section 2 we present three formal decision analytic 
frameworks for analyzing an ensemble of SLR simulations, building through 
existing approaches for exploratory modeling scenario analysis to identify a 
need for synthesizing across scenarios. We present a formal framework for 
transparently synthesizing deep uncertainties in Section 3. In Section 4 we 
describe the didactic case study. Next, in Section 5, we present results for 
each of the three decision lenses and discuss the advantages and limitations 
of each theoretical approach. In Section 6 we discuss limitations of the study 
and future research needs. Finally in Section 7 we discuss key findings and 
implications for policy and practice.

2. Conceptual Framework
In this section we introduce a conceptual framework and notation for decision analysis under deep uncertainty. 
Many bottom-up exploratory modeling frameworks used in climate risk management and related fields use a 
system model (f in Figure 1) to characterize the system's response to a wide range of plausible futures, often called 
states of the world (SOWs) (s in Figure 1). This analysis is often used to explore vulnerabilities and build knowl-
edge about the system (Bankes, 1993), and in general exploratory modeling frameworks aim to avoid making 
explicit judgments about the relative likelihood of different futures.

However, as discussed in Section 1, estimates of trade-offs between desired performance metrics (e.g., cost and 
reliability) depend on probabilistic models of uncertainty. In this paper we present a method for integrating the 
SOWs used in exploratory modeling into a formal decision analytic framework using a subjective probability 
distribution over the space of possible futures, which is used to infer implicit weights over the SOWs. This 
approach is particularly suited for problems where the SOWs are generated from or conditioned on specific 
scenarios (e.g., representative concentration pathway [RCP] scenarios) or where there are multiple models of the 
underlying processes (e.g., multiple parameterizations of the response of local sea levels to global temperature), 
which can lead to the “multiple PDF problem” (discussed in Section 2.2). A motivating advantage is that it makes 
assumptions about the likelihoods of different SOWs transparent to decision-makers.

2.1. Exploratory Modeling

A first analytical step is to use the model in an “exploratory” mode. Exploratory modeling strives to avoid 
making explicit assumptions about the likelihood of different SOWs and instead seeks to generate new knowledge 
(Bankes, 1993) by systematically exploring a large number of possible futures, emphasizing interactions between 
different uncertainties (Reed et al., 2022). Exploratory modeling is often paired with analyses that identify rele-
vant scenarios (Groves & Lempert, 2007; Lamontagne et al., 2018) or summarize a system's response to forcing 
(Poff et al., 2015; Sriver et al., 2018; Steinschneider et al., 2015). Despite the aversion to strong assumptions 
about the likelihood of different futures, subjective modeling decisions such as the choice of system model, 

Figure 1. Outline of the proposed decision-analytic framework. In Section 2.1 
we use an exploratory framework to quantify the performance of candidate 
decisions under a large ensemble of possible futures. In Section 2.2 we 
illustrate the “multiple probability density function problem” by creating 
probability distributions over outcomes that are conditional upon specific 
probabilistic scenarios. In our case study, these scenarios correspond to 
combinations of emissions pathways with physical models for sea level rise. 
Then in Section 2.3 we describe the need for synthesizing insight across 
scenarios. Finally in Section 3 we provide a formal framework for doing so.
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the set of candidate decisions, the criteria used to assess outcomes, and the choice of how to sample SOWs can 
strongly influence results (Moallemi, Zare, et al., 2020; Quinn et al., 2017, 2020).

2.2. Scenario-Conditional Probabilistic Analysis

Although exploratory modeling is a useful framework for understanding systems, there are many questions that it 
cannot answer. For example, answering questions like “what is the 95th percentile of metric u under decision x” 
or “what is the probability of exceeding a critical threshold” requires an implicit or explicit probability distribu-
tion over outcomes (see Schneider, 2002, for a general discussion).

One way to interpret an ensemble of SOWs is as iid draws from some probabilistic data generating process. This 
commonly arises when a single deep uncertainty (e.g., an emissions pathway) is used as an input for a stochastic 
model. To clarify language, we draw a distinction between a SOW, which is a single realization of a possible 
future, and a probabilistic scenario, which we define loosely as a set of assumptions for which probabilistic 
projections (i.e., SOWs) are available or can be simulated. For example, in the case study described in Section 4.1 
we use four physical models of the processes relevant to SLR and four RCP scenarios to generate a total of 16 
probabilistic scenarios.

We illustrate this distinction in boxes (d and e) of Figure 1, denoting the particular scenario Mk. We assume that 
each scenario is probabilistic, that is that SOWs are drawn independent and identically distributed (IID) from Mk, 
the set of outcomes ui,j can be interpreted as IID draws from the conditional distribution over outcomes, p(u|xi, 
Mk). This “scenario-conditional” probabilistic interpretation of SOWs allows for fully probabilistic quantifica-
tion of uncertainty and optimization, conditional on a particular scenario. For example, Fletcher, Lickley, and 
Strzepek (2019) use stochastic dynamic programming to quantify the value of flexibility in water resources plan-
ning. However, only a single RCP scenario (RCP 8.5) is used. While the analysis could be repeated for other RCP 
scenarios, the scenario-conditional analysis framework can only qualitatively characterize uncertainty between 
scenarios (Ruckert et al., 2019; Sharma et al., 2021; Wong & Keller, 2017).

We can also apply this theoretical lens to examine the approach, common in DMDU applications, of sampling 
parameters from a set of fixed ranges. The scenario in this case is thus the choice of bounds on the parameters; 
it is consistent with our above definition of a probabilistic scenario because SOWs can be sampled using proba-
bilistic methods. For example, Sriver et al. (2018) sample parameters describing the rate of SLR across a range 
of values to inform coastal adaptation. Similarly, Trindade et al.  (2020) checks the performance of candidate 
decisions against an ensemble of synthetic time series of streamflow, water demand, and other parameters by 
sampling parameters that transform the available data over a plausible range. Analyses that use this methodology 
are implicitly assuming a single probabilistic model in which different variables are drawn from independent 
Uniform distributions. Many limitations of Uniform and other noninformative priors have been documented in 
the literature, including (a) that they can induce unrealistic implicit priors over functions of parameters and (b) 
results are sensitive to the parameterization of a given process (Seaman et al., 2012). Yet while replacing Uniform 
distributions with alternatives such as maximum-entropy distributions can address some of these challenges (e.g., 
Gupta et al., 2022), subjective modeling choices remain necessary. Our primary concern here is not that these 
subjective modeling assumptions are wrong—this is, almost surely, inevitable—but that when these assumptions 
are opaque and presented without critique or validation (see Gelman et al., 2020, regarding the importance of 
iterative critique) they may lead to inscrutable decision processes and poor decisions.

2.3. Synthesizing Deep Uncertainties for Decision Analysis

Scenario-conditional probabilistic analysis allows for uncertainty quantification and optimization, and is valuable 
in many contexts. However, scenarios are often explicitly provided without probabilities or likelihoods (e.g., the 
shared socio-economic pathways; van Vuuren et al., 2008). Thus, any such analysis is silent on the question of how 
to combine information across different scenarios. We term this the “multiple PDF problem.” Decision making 
around the multiple PDF problem is susceptible to the cognitive biases that interfere with decision-making under 
uncertainty more generally (Morgan, 1990; Srikrishnan et al., 2022; Tversky & Kahneman, 1974). For example, 
while many analyses treat all scenarios as equally likely, this is often inconsistent with available information and 
can lead to poor decisions and outcomes (Wigley & Raper, 2001; E. Ho et al., 2019; Hausfather & Peters, 2020). 
Other analyses suggest using the worst-case scenario as a conservative measure. However, this approach is also 



Earth’s Future

DOSS-GOLLIN AND KELLER

10.1029/2022EF003044

5 of 19

problematic, since (a) there are no fundamental limits on what constitutes a worst-case scenario and (b) improv-
ing performance under unlikely worst-case scenarios may lead to substantially impaired performance under more 
likely scenarios, which may or may not be acceptable to relevant stakeholders. There is thus a critical need for 
synthesizing insights across multiple probabilistic scenarios.

3. Re-Weighting SOWs to Synthesize Across Scenarios
In this section we provide a formal method for integrating exploratory ensembles of deep uncertainties into a 
single probabilistic representation. Our objective is to develop a framework that (a) is conceptually and practi-
cally amenable to exploratory modeling; (b) makes subjective modeling choices explicit and transparent; and (c) 
allows decision analysts to estimate a probability distribution over outcomes.

A particular need is to estimate the expectation of functions over SOWs (i.e., box e in Figure  1). If the J 
SOWs are drawn IID from some distribution that credibly represents the true likelihood of different futures 
then the expected value of such a function, f(s), can be readily approximated using the Monte Carlo estimate 

𝐴𝐴 𝔼𝔼[𝑓𝑓 (𝐬𝐬)] ≈
1

𝑁𝑁

∑𝑁𝑁

𝑗𝑗=1
𝑓𝑓 (𝐬𝐬𝑗𝑗) . However, this is often not the case. For example, in Section 4 we will consider decision 

analysis where the SOWs are sampled from multiple physical models and RCP scenarios, considering that not 
all RCP scenarios are equally likely and that not all physical models are equally skillful. In this case, the formula 
may be adjusted to a weighted Monte Carlo estimate:

𝔼𝔼[𝑓𝑓 (𝐬𝐬)] ≈

𝑁𝑁
∑

𝑖𝑖=𝑗𝑗

𝑤𝑤𝑗𝑗𝑓𝑓 (𝐬𝐬𝑗𝑗), (1)

where 𝐴𝐴
∑𝐽𝐽

𝑗𝑗=1
𝑤𝑤𝑗𝑗 = 1 .

The challenge then becomes to suitably estimate the wj. Many such methods exist; drawing from joint probabil-
ity methods for statistical analysis of tropical cyclones, we employ a grid-based approach (Johnson et al., 2013; 
Resio, 2007; Toro et al., 2010). First, we project the SOWs s ∈ Ω onto a low-dimensional representation, which 
we denote ψ1, ψ2, …, ψJ ∈ Ψ. Then, we partition the parameter space into a region corresponding to each SOW 
and integrating the probability p(ψ) over each region.

Implementing this approach requires choosing a probability distribution for this low-dimensional representation 
of the SOWs, p(ψ), reflecting subjective belief about the SOWs. We denote this pbelief(ψ) to emphasize that it 
represents a subjective belief about the SOWs, rather than an objectively verifiable choice. In general we do not 
expect that stakeholders and experts will agree on pbelief because there is not, even conceptually, an objectively 
correct choice (Oreskes et al., 1994; Walker et al., 2013). However, we posit that since we cannot be “right,” it is 
valuable to maximize the transparency of our implicit probabilistic assumptions, and suggest that writing down 
an explicit model for pbelief supports this aim. Choices for pbelief can be drawn from many sources, including expert 
elicitation or results of previous analyses. These models can be interpreted as prior beliefs about SLR that could 
be incorporated into a Bayesian analysis as additional data is collected in the future, and thus can draw from 
literature on Bayesian prior selection and prior predictive checks (Gelman et al., 2020).

We present here the case where the ψj are one-dimensional; extensions to higher dimensions are possible. We 
first sort the ψj from least to greatest so that ψj−1  ≤  ψj, (j  ≠  1). Defining a cumulative distribution function 

𝐴𝐴 𝐴𝐴belief(𝜓𝜓) = ∫
𝜓𝜓

−∞
𝑝𝑝belief(𝜓𝜓

′)𝑑𝑑𝜓𝜓 ′ , we calculate weights as

𝑤𝑤𝑗𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹𝐹belief

(

𝜓𝜓1 + 𝜓𝜓2

2

)

𝑗𝑗 = 1

𝐹𝐹belief

(𝜓𝜓𝑗𝑗 + 𝜓𝜓𝑗𝑗 +1

2

)

− 𝐹𝐹belief

(𝜓𝜓𝑗𝑗−1 + 𝜓𝜓𝑗𝑗

2

)

1 < 𝑗𝑗 < 𝑗𝑗

1 − 𝐹𝐹belief

(

𝜓𝜓𝑗𝑗−1 + 𝜓𝜓𝑗𝑗

2

)

𝑗𝑗 = 𝑗𝑗 𝐽

 (2)

This step is illustrated in Figure  2. By the definition of cumulative distribution functions, 
𝐴𝐴 𝐴𝐴belief(𝑏𝑏) − 𝐴𝐴belief(𝑎𝑎) = ∫

𝑏𝑏

𝑎𝑎
𝑝𝑝belief(𝜓𝜓

′)𝑑𝑑𝜓𝜓 ′ . Diagnostic checks, such as examining the histogram of weights (not 
shown), may be useful protections against degeneracy.
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The aim of this re-weighting framework is to integrate an ensemble of SOWs used for exploratory modeling into 
formal decision analysis, even when the SOWs deliberately over- or under-sample some regions of the parameter 
space. As in Section 2.2, we must condition on a model: where the analysis of Section 2.2 conditions upon deep 
uncertainties, the approach outlined in this section synthesizes across them. Considering multiple probabilistic 
models for pbelief can also be useful for understanding the sensitivity of the decision to the choice of pbelief. Further, 
the sensitivity, or lack thereof, of different objectives to the choice of pbelief may be useful for identifying future 
research needs.

4. Demonstrating the Concept With a Case Study
To illustrate the proposed decision analytic framework, we model a one-time decision of whether to elevate 
a house, and if so by how much (Figure 3). Following the approach outlined in Zarekarizi et al. (2020), we 
focus on a case study of a hypothetical house in Norfolk, VA. For interpretability, we focus on deep uncer-
tainty in mean relative sea level (MSL) and treat storm surge and other model parameters as shallow uncer-
tainties as shown in Table 1. We use the notation developed in the previous section to describe the case study. 
Specifically.

1.  The decision vector x is comprised of discrete possible house heighten-
ings (Δh); we consider Δh = 0 ft, 0.25 ft, …, 12 ft.

2.  The SOWs describe annual time series of MSL over the T = 70 years 
house lifetime so 𝐴𝐴 𝐬𝐬 ∈ ℝ

𝑇𝑇

3.  The system model f quantifies up-front costs (the cost of elevating) and 
lifetime expected damages (the structural cost of experiencing floods), 
given a decision xi and SOW sj, by integrating economic and engineering 
damage models over a probability distribution for storm surge. We elab-
orate upon these metrics in Section 4.3.

In the remainder of this section we describe data sources and treatment 
of SLR (Section  4.1), storm surge (Section  4.2), damages and metrics 
(Section 4.3), and finally the subjective probabilistic models pbelief used to 
apply the re-weighting method described in Section 2.3 to this case study 
(Section 4.4).

4.1. Sea Level Rise

We analyze simulations of MSL at Sewells Point, VA from four probabilis-
tic physical models using data published in Ruckert et al. (2019). The four 

Figure 2. Schematic of method to re-weight states of the world as defined in Equation 2. This method is illustrated for a 
hypothetical target distribution (dark red line) and J = 4 samples ψ1, ψ2, ψ3, ψ4 (blue dots). As shown in Equation 2, the 
weights wj (orange vertical lines) are calculated based on the cumulative distribution function of the target distribution at the 
halfway points 𝐴𝐴

1

2

[

𝜓𝜓𝑗𝑗 + 𝜓𝜓𝑗𝑗+1

]

 (vertical dashed lines).

Figure 3. Conceptual diagram of the considered example. A state of the world 
(SOW) consists of a description of the uncertain factors (red). We model a 
problem with a single lever (yellow), which is how high to elevate a house 
(Δh). For each SOW (red) and each value of Δh, the system model (blue) 
is used to calculate performance metrics (gray). We also compute a third 
metric, expected lifetime costs, which is the sum of up-front costs and lifetime 
expected damages.
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physical process models considered are (a) the BRICK model (version 0.2) with slow (“BRICK Slow”) and 
(b) fast (“BRICK Fast”) ice sheet dynamics (Wong et al., 2017), (c) the Kopp et al. (2014) model (“K14”), and 
(d) the DeConto and Pollard (2016) model (“DP16”). The Kopp et al. (2014) and DeConto and Pollard (2016) 
models have a 10 year time step, which we linearly interpolate onto a 1 year time step for consistency. Estimates 
of nonstationary MSL also depend on anthropogenic forcing, which is itself deeply uncertain (E. Ho et al., 2019; 
Srikrishnan et al., 2022). To sample this uncertainty, we use simulations from each physical model under four 
RCP scenarios, yielding sixteen time-varying probabilistic scenarios of MSL.

The choices of physical model and RCP scenario jointly determine future MSL 𝐴𝐴 𝐴𝐴
(

𝑦𝑦|𝑡𝑡
)

 . Figure 4a shows the 
time-varying 90% credible intervals of MSL for three representative models. The divergence between the 
best-case (blue) and worst-case (red) models is small in the early 21st century and increases rapidly thereafter. 
Figure 4b shows the PDFs of mean sea level in 2100 (dashed vertical line in panel (a)) under each of the 16 
probabilistic scenarios considered. The stark differences between different scenarios of SLR arise primarily from 
different representations of Antarctic Ice Sheet contributions to global SLR and statistical calibration methodol-
ogies. For a more detailed discussion we refer the reader to Ruckert et al. (2019). We return in Section 5.2 to the 
challenge of decision making given multiple scenarios.

Name Symbol Uncertainty

MSL 𝐴𝐴 𝑦𝑦(𝑡𝑡) Deeply uncertain: four physical models × four RCP scenarios

Storm surge y′(t) Probabilistic: Bayesian inference on a stationary GEV model

Annual maximum flood y(t) Deterministic: 𝐴𝐴 𝐴𝐴(𝑡𝑡) = 𝐴𝐴(𝑡𝑡) + 𝐴𝐴′(𝑡𝑡)

Discount rate ρ Deterministic: 2.5% per year

Depth-damage D(h−y) Deterministic: based on HAZUS model (see Zarekarizi et al., 2020)

Elevation cost C(Δh) Deterministic: a piecewise linear model following Zarekarizi et al. (2020)

Initial height h0 Deterministic: 1 ft below the BFE, unless otherwise noted

House floor area – Deterministic: 1,500 ft 2

Structural value – Deterministic: $200,000

House lifespan T Deterministic: 70 years

Note. Symbols describing the decision-analytic framework are described in Figure 1.

Table 1 
Summary of Parameters, Their Notation, And How Their Uncertainty Is Represented

Figure 4. Projections of future mean sea level depend strongly on the choices of physical model and forcing (a): 90% confidence intervals for mean sea level at Sewells 
Point, VA as a function of time for a representative subset of three probabilistic models (out of sixteen) (b): probability distribution of mean relative sea level at Sewells 
Point, VA in the year 2100 for each probabilistic model considered.
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4.2. Storm Surges

Following prior work (e.g., Garner & Keller, 2018; Sriver et al., 2018), we model annual maximum floods y(t) as 
the sum of sea level 𝐴𝐴 𝑦𝑦(𝑡𝑡) , described in the previous subsection, and annual maximum storm surges y′(t), neglect-
ing any potential hydrodynamic interactions.

We use data on storm surge at Sewells Point, VA (gauge 8638610) from the NOAA tides and currents data archive 
(National Oceanographic and Atmospheric Administration, 2022). Hourly recordings of water level are available 
from 1928 to the present; we use data from the period 1 January 1928 to 31 December 2021. For each calendar 
year we first remove the annual mean, then calculate the maximum water level. We refer this time series of annual 
maximum storm surges as y′(t). We display this time series of annual maxima storm surges in Figure 5a. The 
largest recorded surge was the Chesapeake-Potomac hurricane of 1933, which caused a surge of over 7 ft at this 
gauge, but other hurricanes and Nor'easters have caused surges above 6 ft.

We model future storm surge using a stationary GEV model:

𝑦𝑦′(𝑡𝑡) ∼ GEV(𝜇𝜇𝜇 𝜇𝜇𝜇 𝜇𝜇)𝜇 (3)

where y′(t) is the storm surge (above MSL) in year  t and a GEV distribution with location, shape, and scale 
parameters μ, σ, and ξ, respectively, has the PDF given in Equation S1 in Supporting Information S1. This model 
assumes stationarity, neglecting any potential time dependence.

Our approach to model assessment is based on the concept of principled workflow design for model building and 
checking (see Gelman et al., 2020, for details). One model choice, analogous to the choice of statistical distribu-
tion or the assumption of stationarity, is the choice of how to represent prior information. We include two forms 
of prior information. First, we constrain the shape parameter to be positive, ξ > 0, to reflect knowledge about the 
support of y′, which for a variable distributed according to Equation S1 in Supporting Information S1 is:

supp 𝑦𝑦′ =

⎧

⎪

⎨

⎪

⎩

𝜉𝜉 𝜉 0 ∶ 𝑦𝑦′ ∈ (−∞, 𝜇𝜇 − 𝜎𝜎∕𝜉𝜉)

𝜉𝜉 𝜉 0 ∶ 𝑦𝑦′ ∈ (𝜇𝜇 − 𝜎𝜎∕𝜉𝜉, ∞).
 

Since storm surges cannot be negative, only the latter is physically defensible, justifying our choice to constrain 
the shape parameter to be positive. Second, we add weakly informative priors. Rather than applying prior infor-
mation directly over the joint distribution of the parameters μ, σ, ξ, we instead apply a prior over extreme quantiles 
of the distribution, as in Coles and Tawn (1996). Specifically, we apply Inverse Gamma priors over the 2, 10, 
100, and 500 years return levels, with means of 4, 6, 10, and 15 ft and standard deviations of 1.5, 1.75, 2.25, and 

Figure 5. Annual maximum storm surges (after subtracting mean relative sea level) at Sewells Point, VA from the freely available National Oceanic Atmospheric 
Administration tides and currents data archive (National Oceanographic and Atmospheric Administration, 2022) (a): time series of historic storms. Red (yellow) arrows 
denote notable tropical cyclones (Nor'easters) (b): return periods. Dots indicate observed values; their x-value is their plotting position using the Weibull formula 
(Equation S5 in Supporting Information S1). Gray lines show the 50%, 80%, and 95% posterior confidence intervals from the Bayesian GEV fit (Section 4.2).
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2.75 ft, respectively. The parameters of the Inverse Gamma distribution can be calculated from these moments 
(see Equation S3 in Supporting Information S1). These means and standard deviations were chosen to represent 
plausible physical ranges (Figure S4 in Supporting Information S1).

For inference, we draw 10,000 samples from the posterior distribution p(μ, σ, ξ|y′) using Hamiltonian Markov 
Chain Monte Carlo (Betancourt, 2018; Hoffman & Gelman, 2011) implemented in the Turing package of the 
Julia programming language (Besançon et al., 2021; Bezanson et al., 2012; Ge et al., 2018; Perkel, 2019; Tarek 
et al., 2020). Diagnostics suggest (though cannot guarantee) convergence (see Table S1 in Supporting Informa-
tion S1). We evaluate the model's fit using posterior predictive checks (see Gelman et al., 2020, Section 2.4 and 
references therein). Using the lag 1 and 2 partial autocorrelations, sample maximum, sample minimum, sample 
median, and Mann-Kendall test value as Bayesian test statistics, we find that draws from the posterior predictive 
distribution match the observed test statistics credibly (Figure S9 in Supporting Information S1) although panels 
(a and b) suggest the possibility of temporal structure not captured by our stationary IID model. Future efforts 
could represent this structure by conditioning the parameters of the distribution on relevant climate indices (as in 
Farnham et al., 2018, 2017; Ossandón et al., 2021; Wong, 2018).

Other model validations lend confidence to the stationary GEV model selected. For example, Figure 5b shows 
the estimated return periods for these storm surges; the estimated return period (shading) matches the empirical 
plotting position (dots) and a positive control test (Figure S6 in Supporting Information S1) validates the model's 
ability to recover known parameter values.

4.3. Damages and Metrics

The system model (“relationships” in Figure 3) is comprised of two key pieces. The first is a fragility model that 
estimates the expected flood damages for a particular year (“expected annual damages”), given the elevation 
of the house and the mean sea level for that year. The second model converts a time series of annual expected 
damages into lifetime expected damages.

We define expected annual damages in year t as the expectation of the damage function with respect to storm 
surge. This expectation depends on the house's height (h = h0 + Δh) where h0 is the initial height relative to the 
gauge and Δh is the amount by which the house is elevated. The expected annual damage is thus

EAD(𝑡𝑡) = 𝔼𝔼
[

𝐷𝐷
(

ℎ − 𝑦𝑦(𝑡𝑡)
)]

=
∫
𝑦𝑦′

𝑝𝑝
(

𝑦𝑦′
)

𝐷𝐷
(

ℎ −
(

𝑦𝑦(𝑡𝑡) + 𝑦𝑦′
))

𝑑𝑑𝑦𝑦′, (4)

where D(h−y) is a deterministic function specifying damage as a function of flood depth (relative to the house) 
and p(y′) is the probability density of storm surge. Following Zarekarizi et al. (2020), we use the Hazard U.S. 
(HAZUS) depth-damage curves provided by FEMA; this depth-damage relationship is shown in Figure S1 in 
Supporting Information S1. For comparison, Figure S1 in Supporting Information S1 also shows the “Europa” 
depth-damage relationship developed by the Joint Research Center of the European Commission's science and 
knowledge service (Huizinga & Szewczyk, 2016). Both models show damage increasing with flood depth before 
reaching an upper limit but differ in the value of the upper limit and the rate at which damages approach it. 
Although Zarekarizi et al.  (2020) demonstrate that the choice of fragility function is important for informing 
house elevation, we use only the HAZUS model for simplicity.

The expected annual damage is sometimes calculated by assuming analytically tractable functional forms for the 
depth-damage relationship and for the distribution of hazard (e.g., van Dantzig, 1956). However, the convolu-
tion of the HAZUS depth-damage equation with the GEV posterior does not have a tractable analytic solution. 
Instead, we estimate this convolution through a Monte Carlo method (see Section S1.2 in Supporting Informa-
tion S1 for details). Then, because the expectation in Equation 4 depends only on 𝐴𝐴 𝐴 − 𝑦𝑦(𝑡𝑡) , we calculate expected 
annual damages for a wide range of possible heights, then use this to train a computationally efficient surrogate 
model (using linear interpolation; see Section S1.3 in Supporting Information S1).

The second component of the system model converts a time series of EAD into lifetime expected damages, which 
we define as the up-front discounted sum of expected annual damages:

LED =

𝑡𝑡𝑓𝑓
∑

𝑡𝑡=𝑡𝑡𝑖𝑖

𝛾𝛾(𝑡𝑡−𝑡𝑡𝑖𝑖)EAD(𝑡𝑡), (5)
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where γ = 1 − ρ (ρ being the discount rate), the initial time ti = 2022, and the 
end time tf =  ti + T−1. Although Zarekarizi et al. (2020) show that uncer-
tainty in the discount rate is important for decision support, we use a fixed 
discount rate (see Table 1) for the purposes of this didactic study. For a more 
theoretical discussion see Arrow et al. (2013).

To assess the performance of a given decision for a specific SOW (“Metrics” 
in Figure  3), we calculate the following metrics for each decision-SOW 
combination.

1.  “Up-front cost” is the cost of elevating a house. Following Zarekarizi 
et  al.  (2020), we use estimates of construction cost from the Coastal 
Louisiana Risk Assessment (Fischbach et al., 2012). We normalize this 
cost by house value; this cost curve is shown in Figure S3 in Supporting 
Information S1 and shows a large up-front cost plus a piecewise linear 
marginal cost.

2.  “Lifetime expected damages” is calculated following Equation 5.
3.  “Expected lifetime costs” is the sum of lifetime expected damages and up-front costs.

4.4. Subjective Probability Distributions for Sea Level Rise

We construct three probabilistic models for pbelief(ψ), which represents the amount of SLR from 2022 to 2100.

We use a Gamma distribution for all three probability distributions, parameterized following Equation S4 in 
Supporting Information S1. The distributions were chosen to be illustrative, rather than to reflect any particu-
lar scientific consensus. The Gamma distribution is a flexible distribution that can be used to model skewed, 
lower-bounded distributions, making it an appropriate choice for modeling subjective uncertainty about SLR. 
Table 2 specifies the parameters of these distributions, as well as some quantiles of the distributions. Their PDFs 
are also plotted in Figure 8a.

We developed these subjective distributions for didactic purposes, to illustrate a range of possible beliefs. We can 
compare them, for example, with analysis published by NOAA, which project 1.94, 2.62, 4.2, 5.25, and 6.89 ft for 
the low, intermediate, low intermediate, intermediate high, and high scenarios, respectively (Sweet et al., 2022, 
Table 2.4). We can also compare to the analyses of Sriver et al. (2018) which uses a rescaled Beta distribution 
with bounds of 0.83–8.2 ft and a most plausible estimate of 3.1 ft. Our samples bound all of these estimates.

5. Results and Discussion
We illustrate our approach to synthesizing uncertainties by sequentially analyzing the house elevation prob-
lem through multiple lenses for DMDU. This allows us to demonstrate the advantages and limitations of each 
approach, and to highlight the value of synthesizing across multiple scenarios.

5.1. Exploratory Modeling

We begin by using our model in an “exploratory” mode with an aim of learning about interactions between 
system dynamics and decisions.

One application of exploratory analysis is to reveal the range and variation in outcomes, conditional on taking 
a particular decision. Figure 6 shows the dependence of expected lifetime costs (damages plus up-front costs; 
y-axis) as a function of SLR over the house lifetime (x-axis), height increase (Δh; columns), and initial elevation 
(h0; rows). The outcomes with lowest total lifetime costs arise when the house is not elevated (Δh = 0) and SLR 
is minimal (bottom left corners). The outcomes with highest total lifetime costs arise when the house is elevated 
only slightly and SLR is rapid. As Δh increases, the best-case scenario becomes more expensive because up-front 
costs increase, but worst-case scenarios become less expensive because even if SLR is substantial, damages will 
be negligible.

Parameters Percentiles (in ft)

Name α θ 2.5 25.0 50.0 75.0 97.5

Slow SLR 1.75 0.50 0.08 0.39 0.72 1.19 2.57

Uncertain SLR 1.75 1.25 0.21 0.98 1.79 2.97 6.41

Rapid SLR 3.50 1.25 1.06 2.66 3.97 5.65 10.01

Note. The name of the distribution, the parameters of the Gamma distribution 
with shape α and scale θ, and the 2.5, 25, 50, 75, and 97.fifth percentiles 
(values in ft).

Table 2 
Subjective Probability Distributions Over Sea Level Rise From 2022 to 
2100, That is., pbelief(ψ)
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This analysis answers “what-if” questions like “given h0 and Δh, what is the range of total costs a homeowner 
could face if SLR over the house lifetime is 1 ft or 10 ft.” For some decision-makers, contextualizing this infor-
mation against a few scenarios of SLR (e.g., those of Sweet et al., 2022) may prove sufficient for decision making. 
However, this analysis is silent on how to estimate cost-benefit comparisons, return periods, and other trade-offs.

5.2. Scenario-Conditional Probabilistic Analysis

We now turn to the scenario-conditional analysis described in Section 2.2. Whereas the exploratory analysis of 
the previous subsection interpreted each time series of future sea level as a sample from the space of possible 
futures, we can also interpret each SOW as a draw from one of the 16 probabilistic scenarios of SLR shown in 
Figure 4. As discussed in Section 2.2, this allows a formal estimation of decision metrics, conditional on the 
chosen scenario.

As discussed in Section 2.2, this probabilistic interpretation allows us to compute expected values of functions. 
For example, Figure 7a plots the expected total lifetime cost as a function of Δh for the 16 probabilistic scenarios 
considered (we highlight three representative models). This panel shows lifetime expected damages as a function 
of Δh, shown in Figure 7b, plus the up-front cost of construction. Because there are high fixed costs associated 
with building (see cost curve in Figure S3 in Supporting Information S1), it generally does not make sense to 
raise the house by only a small amount, since this incurs these fixed costs without providing substantial damage 
reduction. Figure  7 shows that estimates of trade-offs between up-front cost and expected lifetime costs are 
highly sensitive to the chosen scenario. For small Δh, expected costs are low under optimistic scenarios (e.g., 
RCP 2.6 with slow ice sheet dynamics; red lines) and high under pessimistic scenarios (e.g., RCP 8.5 with the 
DP16 model; blue lines). Estimates of the optimal decision are highly sensitive to the choice of scenario. For 
example, under the most pessimistic scenario (blue line), the cost-minimizing height increase is 6 ft, which incurs 

Figure 6. Scenario maps show the dependence of expected lifetime cost (damages plus up-front cost) as a function of mean relative sea level (MSL) in 2100 for several 
values of initial height (h0) and house elevation (Δh). Colors indicate the number of states of the worlds of falling within each box. The lowest-cost outcomes occur 
when exposure is low (h0 is large and sea level rise [SLR] is minimal) and the house is not elevated (no up-front cost). The highest-cost outcomes arise when exposure 
is high (h0 is small and SLR is rapid) and investment is inadequate. In all cases, elevating the house reduces the variance in total lifetime cost. Values are sensitive to 
model constants; see Table 1.
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an up-front cost of 73% of the house value but reduces lifetime expected damages by over 150% of house value. 
Under the most optimistic scenario (gray line), the cost-minimizing decision is to not elevate, as elevating 6 ft 
incurs the same up-front cost yet reduces lifetime expected damages by less than 50% of house value.

This approach is, in a sense, another form of exploratory modeling: instead of considering a very large ensemble 
of SOWs, we consider a much smaller set of probabilistic scenarios. Scenario-conditional analysis can be attrac-
tive because it allows modelers to focus on their domain expertise (e.g., the response of ice sheets and global sea 
levels to a particular climate future). However, conditioning simulations on a set of climate futures and physical 
models presents what we term “the multiple PDF problem” because it leaves decision makers with many PDFs to 
choose from and hence many trade-off curves to navigate. The multiple PDF problem has also been discussed in 
other contexts. For example, Sharma et al. (2021) model the reliability of stormwater infrastructure under differ-
ent climate models and downscaling methods, finding diverging estimates of future rainfall hazard, even under a 
single RCP scenario. Similarly, Wong and Keller (2017) construct 18 probability distribution functions for future 
flood risk in New Orleans, considering multiple models for ice sheet dynamics and storm surge and multiple RCP 
scenarios. As a last example, Haasnoot et al. (2021) identify global adaptation needs for different SLR scenarios. 
Although this scenario-conditional analysis is appropriate for understanding differences between models, its key 
limitation is that it places the burden for deciding which probabilistic scenario to design for onto the end user. 
Since not all house owners or contractors have expertise in assessing the relative likelihood of different climate 
futures, they may not be well positioned to make this decision.

5.3. Synthesizing Deep Uncertainties for Decision Analysis

The SOW re-weighting framework described in Section 3 can help overcome the limitations of scenario-conditional 
analysis. In this section we illustrate how this approach can help to shed light on climate risk management under 
deep uncertainty. We present results using each of the models for pbelief outlined in Section 4.4; these three distri-
butions are shown in Figure 8a.

One application of this method is to diagnose the assumptions which which different pbelief are consistent. 
Figure 8b−d) shows the total weight that each choice of pbelief assigns to SOWs generated by each RCP scenario 
and physical model. Specifically, weights are computed as the sum of weights assigned to each SOW sampled 

Figure 7. Each probabilistic model or scenario leads to a different estimate of the Pareto frontier. For emphasis, we highlight three representative models: the Brick 
Slow model (Wong et al., 2017) under RCP 2.6, the K14 (Kopp et al., 2014) model under RCP 6.0 and the DP16 model (DeConto & Pollard, 2016; Kopp et al., 2017) 
under RCP 8.5 (a): trade-off between up-front cost (which is a monotonic function of height increase) and expected lifetime costs (b): trade-off between up-front cost 
and lifetime expected damages (Equation 5). Light gray lines show estimates for all 16 models (four representative concentration pathway [RCP] scenarios × four 
physical process models) considered. Colored lines highlight three representative models for emphasis. The gray arrows indicate the direction of preference.
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from that model. For example, the rapid SLR scenario (green line in Figure 8) places most weight on SOWs 
produced by the DP16 model, and particularly on RCP 8.5 which by some accounts is unlikely given current 
policy (Hausfather & Peters, 2020; Srikrishnan et al., 2022). Conversely, the slow SLR scenario (red line) places 
most weight on the BRICK models, particularly RCP 2.6 (also unlikely given current policy; Hausfather & 
Peters, 2020; Srikrishnan et al., 2022) and RCP 4.5. The uncertain SLR scenario (blue line) allocates approx-
imately equal weight across models. Decision analysts can use this approach as a diagnostic to understand the 
assumptions implicit to their choice of pbelief.

This method can also be used to calculate expectations, allowing us to revisit the trade-off diagrams of Figure 7. 
Figure 9 shows the total lifetime cost (panel A) and lifetime expected damages (panel B) under each choice of 
pbelief. Notably, they give different guidance. Under an assumption of rapid SLR, elevating the house by approx-
imately 6 ft costs 73% of house value and reduces damages by over 100% of house value, yielding a benefit to 
cost ratio of approximately 1.25. Under an assumption of slow SLR, the same decision reduces damages only by 
50% of house value, yielding a benefit to cost ratio of approximately 0.7. Under the intermediate/uncertain SLR 
assumption, the expected lifetime costs are similar for elevating or not elevating the house, and thus the benefit 
to cost ratio is nearly 1. Under all assumptions, elevating by only a few feet is impractical because it involves 
paying the large fixed costs of elevation (Figure S3 in Supporting Information S1) but offers relatively little 
flood reduction. Based on this analysis, we would recommend that the owner if this hypothetical home elevate by 

Figure 8. Impact of different subjective probability distributions for local sea level on implicit weight given to each representative concentration pathway (RCP) 
scenario and physical model. We develop three distributions representing plausible probabilistic beliefs (pbelief) over mean relative sea level at Sewells Point, VA in 
2100, relative to the present. The probability density functions of these distributions are shown in panel (a). In panels (b–c) we show the relationship between these 
distributions and the 16 probabilistic models (four representative concentration pathway scenarios and four physical representations) available. Specifically, (b–c) show 
the average weight given to each model by each choice for pbelief.
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approximately 4–6 ft or not at all. Alternatively, the homeowner could choose to defer the decision of whether, and 
how high, to elevate; our analysis did not consider this possibility but there is a rich literature on flexible design 
and engineering options analysis in climate risk analysis (e.g., Fletcher, Lickley, & Strzepek, 2019; Fletcher, 
Strzepek, et al., 2019; Hui et al., 2018; Garner & Keller, 2018; Herman et al., 2020; de Neufville & Smet, 2019).

6. Limitations and Research Needs
Several limitations to our study merit further discussion. The first category has to do with limitations of the 
underlying method proposed for re-weighting SOWs. For example, we develop a subjective probabilistic model 
pbelief(Ψ) over MSL in the year 2100. Although this is a low-dimensional representation of the full time series, it 
is not a sufficient statistic. In other words, many possible low-dimensional representations are possible and time 
series with the same MSL in 2100 May differ in other ways. For problems with more sources of uncertainty, 
such as multisector problems, choosing an appropriate low-dimensional representation may prove challenging. 
In such settings, diagnostics and sensitivity analyses may shed light on the appropriateness of different modeling 
choices. A related concern is that we developed our three distributions for pbelief(Ψ) in an ad hoc fashion that may 
not represent well-calibrated beliefs. Although this is appropriate for our didactic illustration, recent advances in 
Bayesian elicitation of expert opinion (see Mikkola et al., 2021, and references therein) can be applied to improve 
decision making in real world case studies. More fundamentally, our method assumes that there exists an expert 
capable of integrating over the many processes that drive SLR, from global greenhouse gas emissions to the 
global carbon cycle to climate sensitivity and ice sheet response (Morgan, 2014). An alternative approach would 
be to build a probabilistic model for each of these steps, and to use each as an input to the next to develop a fully 
probabilistic model for SLR. Yet while some progress has been made developing probabilistic models for specific 
elements of this model chain (e.g., Srikrishnan et al., 2022; Wong et al., 2017), this remains a computational and 
conceptual challenge.

The second category of limitations has to do with the case study and our interpretation of the house elevation 
decision problem. This problem intersects with decisions about where to live and how to manage household 
finances, both of which are highly complex. One extension of our analysis would be to consider additional 
decision objectives. In particular, we hypothesize that incorporating improved representations of risk aversion 
into decision support may substantially improve their usability. One could also extend the analysis to consider 
additional sources of uncertainty such as depth-damage relationships (Nofal et al., 2020; Rözer et al., 2019), the 
cost of elevating a house, the house lifespan, the effective discount rate, and value of the land on which the house 
is built (Zarekarizi et al., 2020). Finally, while here we consider the decision to be a one-time decision, one could 

Figure 9. As Figure 7, but with Pareto frontiers for the full distribution of outcomes using the three models of pbelief (colors).
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also frame this as a sequential decision problem. The analysis of sequential decision problems applies tools from 
control theory and reinforcement learning to identify policies that map “triggers” (i.e., state variables) to deci-
sions (Herman et al., 2020). Yet although framing the decision through a sequential lens can increase adaptability 
and improve outcomes (Fletcher, Miotti, et al., 2017; Garner & Keller, 2018), decisions and outcomes remain 
highly sensitive to the characterization of uncertainty (Herman et al., 2020), and thus the problem of synthesizing 
across deep uncertainties remains relevant.

These limitations motivate several directions for future research. From a methodological perspective, developing 
model chains that capture uncertainties in global energy and economic pathways, global climate sensitivity, and 
local hazard response (see Figure 1 of Moss & Schneider, 2000) offers a principled framework for fully probabil-
istic estimation of local hazard, subject to (still necessarily subjective) probabilistic models for key parameters. 
From a decision support perspective, improved understanding of the conditions under which household-scale 
strategies for flood risk management, like elevation, achieve relevant objectives could support improved resil-
ience and adaptation. Additionally, since developing bespoke analyses for each house may be impractical, identi-
fying decision rules that are applicable across different house characteristics may improve usability and guidance. 
Finally, there are many parallels between DMDU and subjective Bayesian literature on building predictive models 
in the “𝐴𝐴  -closed” case when “all models are wrong” (Box, 1976; Gelman & Shalizi, 2013), and thus future work 
can demonstrate how to incorporate techniques from Bayesian workflow (see Gelman et al., 2020) into DMDU 
methodologies.

7. Conclusions
This study develops a framework designed to increase the transparency of quantitative decision analysis under 
deep uncertainty. We develop a framework capable of blending iterative, stakeholder-driven exploratory mode-
ling (see, e.g., Helgeson et al., 2022) with subjective probabilistic expert assessment. Such an approach is urgently 
needed given that deeply uncertain nonstationarity hazards pose a fundamental challenge to classical methods of 
hazard estimation. We use a didactic case study of house elevation in the coastal zone to illustrate a method for 
transparently synthesizing across deep uncertainties.

The proposed SOW re-weighting framework can be applied to inform critical challenges in climate risk manage-
ment. An obvious area of application is to the design of infrastructure. For example, much of the stormwa-
ter infrastructure in the United States is inadequate for current and anticipated future climates (Lopez-Cantu 
& Samaras, 2018). Yet upgrading this infrastructure is costly and subject to large uncertainties between rain-
fall models (Sharma et  al.,  2021) and RCP scenarios. Similarly, decisions like levee heightening (Garner & 
Keller, 2018; Oddo et al., 2017; van Dantzig, 1956) and sea wall design (United States Army Corps of Engineers, 
Galveston District & Texas General Land Office, 2021; Appendix D., pp. 2–59) are subject to deep uncertainties 
including SLR. Investments in water resources planning and management also depend on assumptions of future 
water demand, availability, and technologies (Trindade et al., 2019). And analyses of climate change mitigation 
options, such as estimates of the social cost of pollutants (Errickson et al., 2021) or cost-minimizing energy tran-
sition pathways, are conditional on probabilistic models for inputs like technology prices and population.

Of course, all models are ultimately wrong (Box, 1976). Thus seeking decisions that perform well across a range 
of assumptions, and improving the decision space through robust design and flexibility, can improve outcomes. 
Yet whenever decisions are compared quantitatively, assumptions about the probability of different possible 
futures are necessarily made. We call for researchers studying climate risk management to make these implicit 
assumptions explicit, and we suggest that coordinated guidance can help practitioners determine better design 
criteria.

Data Availability Statement
All code, including source code, is available under the GNU Public License (version 3) at https://github.com/
jdossgollin/2022-elevation-robustness. This code is written in the open source Julia programming language and 
detailed instructions for reproducing our results are provided. A permanent, citeable archive of the precise version 
of the codes used in this study is also available on Zenodo at https://doi.org/10.5281/zenodo.6814588.
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